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3.9. GEODYNAMIC CRUSTAL EVOLUTION AND LONG-LIVED
SUPERCONTINENTS DURING THE PALAEOPROTEROZOIC:
EVIDENCE FROM GRANULITE-GNEISS BELTS, COLLISIONAL
AND ACCRETIONARY OROGENS

M.V. MINTS AND A.N. KONILOV

Introduction

Proterozoic palaeomagnetic poles from the major shields point to a single apparent polar
wander path (APWP) (Piper, 1983), which supports a possible single coherent continental
lithospheric plate from c. 2.9 Ga to c. 1.1 Ga. However, the APWP method has intrin-
sic problems, such as large uncertainties in palaeopole ages and large gaps in the APWP
record (e.g., Buchan et al., 1996). Consequently, geodynamic reconstructions of the his-
tory of early Precambrian supercontinents are based mostly on geological considerations;
however, models reflect significantly different understandings of key geological structures,
especially orogenic belts (e.g., Gaal, 1992; Rogers, 1996; Condie, 1998).

Geochronological data demonstrate episodicity in Palaeoproterozoic geological evolu-
tion, preceded by a prominent 2.7 Ga peak in the geochronological record, postulated to
reflect creation of the first supercontinent (section 3.2) or a small number of composite con-
tinents. Palaeoproterozoic crustal evolution encompassed at least incomplete disruption of
the supercontinent(s) (Khain and Bozhko, 1988; Mints, 1998; Condie, 2002a), commenc-
ing at c. 2.5 Ga. Reassembly at c. 1.75-1.65 Ga followed increased production of juvenile
continental crust, which began at c. 1.9 Ga, followed by rapid accretion of arc systems
at 1.88-1.84 Ga. Geochronological data also indicate a prolonged period of very low mag-
matic activity within continental areas between 2.45 and c. 2.1 Ga (Condie, 1998) (this is
supported by an apparent lack of large igneous provinces at c. 2.4-2.2 Ga; section 3.3).

Palaeoproterozoic juvenile assemblages dominate within two types of mobile belt:
(1) low-grade (greenschist to low-temperature amphibolite facies) volcano-sedimentary
and volcano-plutonic belts; analogous Archaean belts are generally termed greenstones—
e.g., sections 2.3, 2.4, 3.6, 4.3 and 4.4), and (2) high-grade (high-temperature amphibolite
to ultra-high temperature granulite facies) "granulite-gneiss" belts (see also section 3.8).
The former belts are interpreted as sutures (collisional orogens) or collapsed continen-
tal rifts. Extended volcano-plutonic assemblages at the margins of ancient continents are
usually termed accretionary orogens (e.g., Hoffman, 1989c; Windley, 1992) (see also sec-
tion 3.6).

However, ideas on the nature and tectonic and geodynamic significance of granulite-
gneiss belts remain controversial. Structural constraints indicate that many large-scale
Palaeoproterozoic granulite terranes evolved within a broadly collisional context (e.g.,
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Fig. 3.9-3. p-T evolution of the Lapland granulite belt and corresponding deep crustal section (after
Mints et al., submitted).

land batholith and comprising the Nagssugtoqidian, Rankain, Foxe and Torngat belts and
some tectono-stratigraphic units (Lake Harbour Group, Narsajuaq arc, Ramsay River or-
thogneisses; St-Onge et al., 1999), can be reassessed in the light of recent geochronolog-
ical and petrological studies (Taylor and Kalsbeek, 1990; Kalsbeek and Nutman, 1996;
Van Kranendonk, 1996; Kalsbeek et al., 1998; Nutman et al., 1999; Scott, 1999; Jackson
and Berman, 2000). These belts are formed mainly by granulite gneisses with inferred
metamorphic temperatures having reached 950°C and pressures from c. 4 to c. 12 kbar.
Protoliths of the lower parts of the metasedimentary sequences were predominantly
platform- and rift-related rocks with subordinate evaporitic deposits, mafic and ultramafic
volcanics and sills, and anorthositic bodies. The terrigenous metasediments were derived
from 2.4-1.93 Ga juvenile Palaeoproterozoic precursors of unknown provenance with sig-




















